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PLANE WAVES ON A LIQUID SURFACE WITH
HARMONIC PERTURBATIONS OF BOUNDARY
COMPONENTSY
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Low-frequency asymptotic solutions are constructed for the wave problem with harmonic perturba-
tions of parts of the boundary, neglecting surface tension. The asymptotic expansions are justified and
estimates of the error of the solution are given.

This problem has been considered both without [1-4] and with [5, 6]% the inclusion of surface
tension. In particular, a solution to the limiting problem with infinitely large dimensionless
frequency (or the absence of gravity) was taken [3] as an initial approximation to the solution
for the problem under consideration. The method of matched asymptotic expansions was then
used at points where the boundary conditions change to fine-tune functions with large
gradients.

Below we construct solutions bounded at infinity and with first-order discontinuities (with a
finite jump) at points where the boundary conditions change. We present an iterative scheme
that differs from the traditional one. This is due to the fact that the initial approximation for
infinitely high frequencies gives unbounded free surface displacements at points where the
boundary conditions change. If the solution is corrected by the deformed coordinate method, it
becomes necessary to solve the wave problem for harmonic displacements of a semi-infinite
part of the upper boundary of the liquid as a rigid whole. This corresponds to the displacement
of an infinite body of liquid and requires the application of an infinite load to the upper
boundary of the liquid, whereas in the original boundary-value problem such singularities do
not occur. This was the motivation for developing an alternative iterative scheme which was
free of these singularities.

1. STATEMENT OF THE PROBLEM

In the linear formulation with vanishingly small dissipative forces the two-dimensional
steady wave motion of an ideal fluid with infinite depth with harmonic perturbations of part of
its boundary is described by the following boundary-value problem [1]
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oU/dt + pU =~ p Ve, divU =0, U =V

P=p +pgz - po, 2=~ p[o®/ot + n®]

~P+pgl =—pe=—TI(x)ei®, /Ot =U, z=0, | x| >a

U, = Vi(x, £) = dWa(x, )0, x| <a,z=0 (1.1)

lim (V®)r'*® =0, >0, r=(x* +z2)y2

r—o0

. [+8
‘}ln_qaw[xl%* F=0, F={®,,p.}, §>0

F(x,z,t+ %) =F(x,2,1)

Here U={U,, U,} is the velocity vector of the particles of the liquid, p is the hydrodynamic
pressure, P is the dynamic part of the hydrodynamic pressure, pg(-z) is the hydrostatic part of
the hydrodynamic pressure, { is the upward displacement of the free surface, V «(x,
1)=V,(x)e* is the oscillatory velocity of part of the upper boundary, W «(x, 1)=W(x)e™ are
the specified vertical displacements of points of the upper boundary of the liquid from the
equilibrium state p,(p,) is the external dynamic (static) pressure on the free surface of the
liquid (and we set p,=0), p is the density of the liquid p is a small dissipation coefficient
(n>0), 2a is the width of the excited part of the upper boundary of the liquid, and w is the
oscillation frequency. The origin of coordinates is taken to be the middle of the excited part of
the boundary at the equilibrium position, the x axis is horizontal and the z axis is directed
vertically upwards against the force of gravity.

We will seek a solution of problem (1.1) in the form

@ =@, ¢=ne", ion =3¢/, (1.2)
Here ¢(x, z) and n(x) are amplitude functions for the velocity potential and upward

displacement of the free boundary.
Substituting (1.2) into (1.1), we obtain the following boundary-value problem for ¢

Ap =0
Y@ + 39/dz =— io(pg) L, z=0, | x| >a
99/dz = Vo(x) = ioW(x), z =0, |x| <a (1.3)

{@, 0¢/ox, 09/0z} — 0, x? + 22 — oo
Y = (0? - iop)/g.

2. REDUCTION OF THE ORIGINAL BOUNDARY-VALUE PROBLEM TO AN
INTEGRAL EQUATION

We continue the function IT(x) into the interior of the interval |xI<a, introducing the
function g (x)

o i [0, x| > a .
_ytp+az— pgq, q(x) {Q(x), o < a @1)

In this problem Q(x) is the amplitude function of the unknown excess pressure which
deforms the excited part of the upper liquid boundary in the required manner.
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We construct a solution of an auxiliary problem assuming that the function Q(x) is known at
this stage [7]

%9 9 amy Ky T K (x - u)du
9zl-o P8 Pg e
K@=0em%] J H—d& iG(vlzl)—(zn)%ie-"lzl; 22)

G(u) = —[cos(u)ci(u) +sin(u)si(u)]
Here ci(u) is the integral cosine [8]. We consider the interval Ix|<a. According to the

boundary condition in (1.3) at z=0, |x|<a, and also using the fact that g(x)=0 when IxI>gq,
we obtain an integral equation in Q (x)

0(x) +pgW(x) = -2m) By | Q)K (x - u)du, |x|< a

We write integral equation (2.2) in the form

O(x) +pgW(x) = UQ = yi [ Qu)e Iy + £ (x)

-a

£y =y [QUIGHIx - udu, |3 <a 23)

3. SOLUTION OF THE INTEGRAL EQUATION AT LOW FREQUENCIES

We replace the original integral equation (2.3) by the “approximation”

D(x)+peW(x)=T 0 =i | (e " "dy (31)

-a

We estimate the closeness of the integral operators in the original and “approximate”
equation in the metric space C

lw-Trel =Irol< = frllehmax fiGerlx - uplda

Using integral representations of the functions G(z), ci(z), si(z), we obtain

[G(2)|<|G(z)| < C+m/2+|In(z)|+ 23 / 4
zp=Rez >0, C =0.577

U-0)0ll<2n'eM
kv -0)g) < 2n~'emjg| 62)

M=|In(g)|+C+n/2+1+e2/3
8=|)w|, £0=A‘0’ 3.=‘Ya, ;\'0 =Yoa

Yo=Rey=w?/g
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This shows that at low frequencies (¢ —0, g,— 0) the integral operator U of the “approxi-

mate” equation is infinitesimally close in norm to the integral operator U of the original
equation.

We solve the “approximate” integral equation (3.1). To this end we integrate Eq. (3.1) with
respect to x. We obtain

R(x) + pgV(x) = YiJ, + YiJ, (3.3)
R(x)= [Tt V(x)= | W(H)ds
¢ ¢

X1 __ ra_ ‘
=] I (e " uds, T, =[[B(u)e™ " dud
0- [1Y]

We transform the double integral J, as follows:

ﬁx ol - itit-u) 44 du Q(t) 13 —ip{x-u) R(x)
g[d | O(w)e lY iy ]d p» Ja O (u)e du+—== .

+L {3 au

L4 I

We similarly find J,. We then multiply (3.3) by ¥, and add the resulting equation to the
result of differentiating (3.1) with respect to x. Using Q"' =R", W’ =V", we obtain

R” -»*fzx-i-;zg{;f"e-yzv}:
G =1J[Bw-B-w) an
From this we derive
T(x) = Dy shpe) + Dy ch) — pEW (x) - 21pg] W(EIShCY(x - 34)

The constants D, and D, are found from the condition that Q(x) satisfies the integral
equation (3.1). In particular, when W(x)=W,=const>0, we have

00 =-pgWp[1-2D"" bV}, < a 35)
D(A)=ch(A)—ish(A), A=1a

"To estimate the error of the solution we write the original and “approximate” integral
equations in operator form

(I-TND(x)=-pgW(x); (1 -U)Q(x)=—pgW(x) (36)
Q(x)=(I-U) " (-pgW(x)
Then using the traditional estimate scheme {9] we obfain
0 = -0) ' (-pgW(x) =~ T)' [ -T)+ (T -V)]@=
=Q+(I-T)y'(T -Ux(@-0)+0)
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From this, and using estimate (3.2), we obtain
uQ-aﬂs T%IQ_“’ 8= Zn"eMI(I— U)""

When W(x)=W,=const>0 we find that I(I-U)™ ll<1 using the last equation in (3.6) and
the equations in (3.5). Finally, we obtain the following estimate for the error of the solution

o8| < opgWy / (1-0), o=2n""eM B

The approximate solution Q(x) of Eq. (3.1) can be made more precise using an iterative
scheme based on the integral equation (2.3)

0" (x)= Bx)+ £ 70+ 29] £V @sh1Ce-
)= -%_TQQ‘"’(u)Gwa ~udu, QV(x)=0(x) e
The function Q(x) here is defined in (3.4), with
Dy, =8;(b Fby)/ [ch(R) 2ish(A)], & =i, 8, =1
b= ¢P8‘Yijaw(§)[ch(‘l(a +E))+ish(y(atE)ME
It follows from estimate (3.2) that the iterative process converges, and we have the estimate
lo-o"V|< o)/ a-o (3.9)
In the W(x) =W, =const case with n=1 we find that
0P(x)= ngo{-l 77!y In(xy) - 3, In-xy)] - ya[2i + 77 2(C- 1))+ 0(§)}. (3.10)
X, =Y(x¥Fa)
0(x) = 0P (x) + O(pgWE), &=’ In(0)
Thus, the excess pressure at points where the boundary conditions change has a singularity

of the type plnp, where p is the distance from the point where the boundary conditions change.
The strength of this singularity is proportional to the dimensionless frequency ya.

4. DETERMINING THE FREE SURFACE AT LOW FREQUENCIES

Substituting expressions (3.5) and (3.7) into the final equation in (2.1), we determine the
function g (x). We then compute d¢/dz |, from (2.2), and use it in the final equation in (1.2) to
find (for the case W(x)=W,=const>0)

-1 -1
)=~ — o )% jpgwo[l ~2D7 ch(p) K (x - w)du + R, (4.1)

G )% Ly - Il =Jo- 2]
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The integrals in (4.1) are evaluated by parts of the formulae

dFldz=~G(z), dG/dz=F-z"', F=d(G+In(z))/dz

e ¥ * te™% (42)
F(z)= (I);;—;Tdt, G(2) =‘J)?;;—ldt, Rez>0
As a result we have
N(x) = Ae™ — AQmi) "y (x)+ By, (x)+ R, x>a
A= WD (AM)sh(L); B=W,(2=D(A))™
V1(x) =i[F(x) = F(xp)]+ G(x) + G(xy)
V2 (%) = €% [ By (x;) - By (x)] ~ € P [ By (-x5) ~ By (-x,)] (4.3)

E(2)=[tTe"ds, |arg(z)| <
z

|Ro| = Woeo(1+2M,) 1 (1~ 0), M, = C+527! +|In(2e, )|+ €3
The quantities D (M), €, €, and A occurring here are given by (3.5), (3.2) and (3.7).
From (4.3) with x — 4" we obtain the value of the amplitude function of the free surface at
points where the boundary conditions change
n(a*) = 2Ax " Wy[-In(21) + 1 - C]+ O(Wy&)
Hence, the upper boundary of the liquid undergoes a finite first-order discontinuity at the

points where the boundary conditions change x=zta, the magnitude of the jump being
proportional to the dimensionless frequency.

5. AN ESTIMATE OF THE DISCREPANCY OF THE BOUNDARY CONDITION AT LOW
FREQUENCIES IN THE ORIGINAL PROBLEM

We shall also estimate the discrepancy in the boundary condition in (1.1) when z=0, Ixl=ag,
i.e. compute the amplitude function n(x) for the deformation of the upper boundary of the
liquid at | x I< a and compare it with the specified value n(x)=W,. We shall show that

n(x) = Wy[1+0(8)} (5.1)

From (4.1) and (2.2) at | x I< a we evaluate the integrals and obtain

(x) = Wo{2 - €72 — ™ 4D WDy (yo)1 - €72 | +iD™ Dy (w1 - € | - 1+
+77'[F(xy) = F(=x)] - 27 ch(x) + (2%) ™! ch(M)] F(x ) + F(=x;)]+ (27) " sh(M)[ G(=x, ) 4
+In(-x)) + G(x,) +In(x,)]+ 0(E)} (5.2)

From this, using the representations of F(z) and G(z) when |z1— 0, we obtain (5.1).



Plane waves on a liquid surface with harmonic perturbations of boundary components 247

6. SOLUTION OF THE INTEGRAL EQUATION FOR FIXED BOUNDED FREQUENCIES

We shall show that for all A=1ya of sufficiently small absolute magnitude (1A I<As), the
integral operator U specified by the right-hand side of Eq. (2.3) is a contraction operator.

We assume that W(x) belongs to the space I’ and we seek a solution of (2.3) among
functions in I2.

Let Q, and Q, be two arbitrary functions in I, We shall show that a positive constant a <1
exists such that

pUQ,, UGy )< 0p(Q1,Q,), PO ¥2) =]yy = ¥a
Putting £=Q, -0Q,, y,=UQ,, y,=UQ,, we have
(0 -y, ol <l § e G)ldu + 7t y] SIEGONG (v|x - )

From this, using the Cauchy-Bunyakovskii inequality and the estimate for G (z) from (3.2),
we obtain

. %
I (x) = yy(x)| < hfl{(za)% + u"[ [G*(yolx- ubdu} }llﬁﬂ

Squaring both sides of this equation and integrating, we have
gl | £ 2
i -yl < IMBJE), B=4+2%%"" [f2(s)ds+n2 | f(s)ds
-1 -1

i
()= [G*(Mgls ~t)dt, Ay =74a
-1

It follows from this that when Iyal< B™ =+, the operator U is a contraction operator. Thus,
by the Banach theorem [9], we have proved the existence of uniqueness of the solution of Eq.
(2.3), and this solution can be obtained by the method of successive approximations. One can
take any function in L’ to be the initial function. Here uniqueness means the uniqueness “up

to a transition to an equivalent function” [9].
In the case when W(x)=W, =const > 0, taking the initial function to be Q =(0), we find
ON(x) =~ pgW,
0P (x) = —pgWp{1- €™ — ™ + 1+ 7! [(=F(0) + F(x)) + (F(=x) - FO)]} —pgW
F(z)=ci(z)sin(z) —si(z)cos(z), Rez>0

Expanding the functions in series, we obtain
0®(x) = ngo{—l -7 [x In(xp) - %, In(-x,)] - x[zi +2nl(C- 1)]+ o)}

which is identical with the representation (3.10) for 0®(x) obtained by other methods.
I wish to thank V. 1. Yudovich for discussing the results and for a number of remarks.
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