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Low-frequency asymptotic solutions are constructed for the wave problem with harmonic perturba- 

tions of parts of the boundary, neglecting surface tension. The asymptotic expansions are justified and 

estimates of the error of the solution are given. 

This problem has been considered both without [l-4] and with [5, 6]$ the inclusion of surface 
tension. In particular, a solution to the limiting problem with infinitely large dimensionless 
frequency (or the absence of gravity) was taken [3] as an initial approximation to the solution 
for the problem under consideration. The method of matched asymptotic expansions was then 
used at points where the boundary conditions change to fine-tune functions with large 
gradients. 

Below we construct solutions bounded at infinity and with first-order discontinuities (with a 
finite jump) at points where the boundary conditions change. We present an iterative scheme 
that differs from the traditional one. This is due to the fact that the initial approximation for 
infinitely high frequencies gives unbounded free surface displacements at points where the 
boundary conditions change. If the solution is corrected by the deformed coordinate method, it 
becomes necessary to solve the wave problem for harmonic displacements of a semi-infinite 
part of the upper boundary of the liquid as a rigid whole. This corresponds to the displacement 
of an infinite body of liquid and requires the application of an infinite load to the upper 
boundary of the liquid, whereas in the original boundary-value problem such singularities do 
not occur. This was the motivation for developing an alternative iterative scheme which was 
free of these singularities. 

1. STATEMENT OF THE PROBLEM 

In the linear formulation with vanishingly small dissipative forces the two-dimensional 
steady wave motion of an ideal fluid with infinite depth with harmonic perturbations of part of 
its boundary is described by the following boundary-value problem [l] 
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au/at + pu = - p-‘VT, divu = 0, u = VQ, 

T=p+pgz-po,T=-pp[acplat+CIQ] 
-[P+ pgc =-p* = - II(x)eio’, ar/at = II,, z = 0, Ix1 > a 
u, = v*(x, t) = aw.h o/at, I.4 d u, z = 0 

lim (V@)I-'+~ =o, 6>0, r=(2+2)% 
i--am 

(l-1) 

lim Ix(~+'F=O, 
l4+- 

F={O,$p+}, 6>0 

Here U = {U,, U,} is the velocity vector of the particles of the liquid, p is the hydrodynamic 
pressure, P is the dynamic part of the hydrodynamic pressure, pg(-z) is the hydrostatic part of 
the hydrodynamic pressure, c is the upward displacement of the free surface, V* (x, 
t) = V,(x)e” is the oscillatory velocity of part of the upper boundary, W*(x, t) = W(x)e” are 
the specified vertical displacements of points of the upper boundary of the liquid from the 
equilibrium state p*(pJ is the external dynamic (static) pressure on the free surface of the 
liquid (and we set p* = 0), p is the density of the liquid p is a small dissipation coefficient 
(p >O), 2a is the width of the excited part of the upper boundary of the liquid, and o is the 
oscillation frequency. The origin of coordinates is taken to be the middle of the excited part of 
the boundary at the equilibrium position, the x axis is horizontal and the z axis is directed 
vertically upwards against the force of gravity. 

We will seek a solution of problem (1.1) in the form 

Here cp(x, z) and II(X) are amplitude functions for the velocity potential and upward 
displacement of the free. boundary. _ 

Substituting (1.2) into (l.l), we obtain the following boundary-value problem for cp 

A(p=O 

-*kp+ acpiaz =- io(pg)-'II, z =o, 1x1 >Q 

acp/az= Vo(x)= ioW(x), z = 0, 1x1 s a 
I CP, acplax, acp/az) 

y=(o* - iop)/g. 

+ 0, x* + z* + 00 

(1.3) 

2. REDUCTION OF THE ORIGINAL BOUNDARY-VALUE PROBLEM TO AN 
INTEGRAL EQUATION 

We continue the function II(x) into the interior of the interval Ix IS a, introducing 
function q (x) 

the 

a9 * 
-*+az 

-=-z,: 4(x)= 
{ 
Jxx), 1x1 > a 
Q(x), 1x1 < a (2-l) 

In this problem Q(X) is the amplitude function of the unknown excess pressure which 
deforms the excited part of the upper liquid boundary in the required manner. 
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We construct a solution of an auxiliary problem assuming that the function Q(X) is known at 
this stage [7] 

acp . ’ m 

dzr=o =-~4+(2a)-Xy~_~q(u)K(+-u)du 
00 

K(z) =(2x)-X 7 *, = 
--Is]-r 

- (27~)~ie-~‘~‘; (2.2) 

G(u) = -[cos(u)ci(u)+sin(u)si(u)] 

Here ci(u) is the integral cosine [8]. We consider the interval Ix IG a According to the 
boundary condition in (1.3) at z = 0, IX IS a, and also using the fact that q(x) = 0 when I x I> a, 
we obtain an integral equation in Q(X) 

Q(x) +pgW(x) = -(2x& jlQ(u)K(x - u)du, 1x1 c a 
--(1 

We write integral equation (2.2) in the form 

Q(x)+pgW(x)=UQqijQ(u)e-+%u+f(x) 
-* 

f(x) = --p-l IjQ(u)G(ylx - u[)~u, 1x1 s u 
-a 

(2.3) 

3. SOLUTION OF THE INTEGRAL EQUATION AT LOW FREQUENCIES 

We replace the original integral equation (2.3) by the “approximation” 

(3.1) 

We estimate the closeness of the integral operators in the original and “approximate” 
equation in the metric space C 

y(u - p)QlI = llf<x>ll s f’l$QilmF @3~lx - ul>ldu --(I 
Using integral representations of the functions G(z), ci(z), si(z), we obtain 

IG(z>I~~JG(Q)~~ C+JC/~+~~I(~)~+Z~ /4 

zo = Rez > 0, C = 0.577 

u<u - o)QII s 2~-‘4Qll 

M=Iln(&,)I+C+K/2+1+~/3 

E=lhl, Eg=hO* h=ya, ho =y($ 

y0=Rey=02/g 

(3.2) 



equation, 

This shows that 
mate” equation 

at low frequencies (a+ 0, a, + 0) the integral operator u of the “approxi- 
is infinitesimally close in norm to the integral operator U of the original 

We solve the ~~a~rox~ate~’ integral equation (3,X), To this end we integrate Eq, (3.1) with 
respect to X. We obtaia 

We ~~sform the double in&gral JI as follows: 

We similarly find S2. We then multiply (3.3) by yz and add the resulting equation to the 
result of differentiating (3.1) with respect to n. Using Q@ = R”, w’ = V*, we obtain 

From &is we derive 

The constants II% and Q are found from the condition that g(x) satisfies the integral 
equation (3.1). In particular, when W(X) = W, = const > 0, we have 

Q(X> = -$!gwo[ f - 20-” ch@j], 14 S a (33.5) 

D(A) = ch(h) - ish(h), X = ‘p 

the solution we write the original and ‘~a~pro~irn~~e~ integral 

-- 
(Z - u >Q(x> = -p@vx); (I - U)Q(x) = -pgW(x) (3.6) 

Q(X) = (I - V)-’ f-pgW(x)) 

Thea using the ~a~~o~l estimate s~eme [9] we obtain 

~Y(I-~)-‘(-~~W(X))=(Z-~)-~[~Z-~)+(~-~)~Q= 

=Q+Cr-8)-‘(~-rS)f(Q-g)~~). 
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From this, and using estimate (3.2), we obtain 

When W(X) = W, =const > 0 we find that II(Z-u)-’ llsl using the last equation in (3.6) and 
the equations in (3.5). Finally, we obtain the following estimate for the error of the solution 

II II Q-8 GaggW,/(l-a), a=2&II4 (3.7) 

The approximate solution Q(X) of Eq. (3.1) can be made more precise using an iterative 
scheme based on the integral equation (2.3) 

Q’“+“(x)=Z~(X)+~(~)(+)+~~~~(~)(~)S~(~(X-~))~ 

f’“‘(x) = -$i$‘%)G(ylx - ul)du, Q”‘(X) = Q(X) 
(3.8) 

The function Q(X) here is defined in (3.4), with 

4.2 =6,(61 *b,)l[Ch(X)fish(3L)], 6, z-i, 6, ~1 

b,2 =FpsrigW(S)~ch(r(af5))+ish(r(n~5))tiS 
To 

It follows from estimate (3.2) that the iterative process converges, and we have the estimate 

flQ-Q(““)II~allall(l-a) (3.9) 

In the W(X) = W, = const case with n = 1 we find that 

Qc2’(x) = o&{-l - n-‘[x,ln(x,)-xl ln(-x,)1-p[2i+z-‘2(C-1)]+0(&). 

XI.2 = Y(X ia) 

QW = Q’*‘(x) + WwWoS>l 5 = j@jlnCX] 

(3.10) 

Thus, the excess pressure at points where the boundary conditions change has a singularity 
of the type plnp, where p is the distance from the point where the boundary conditions change. 
The strength of this singularity is proportional to the dimensionless frequency yu. 

4. DETERMINING THE FREE SURFACE AT LOW FREQUENCIES 

Substituting expressions (3.5) and (3.7) into the final equation in (Z.l), we determine the 
function q(x). We then compute &p/az I, from (2.2), and use it in the final equation in (1.2) to 
find (for the case W(x) = W, = const > 0) 

(4.1) q(x)=_LL j P~W~[l-2D-‘ch(yu)~(~-~)dsr+R,, 
I%? (2x)X -0 

]%ls +&$~]jlK(~-&k IRpl=IQ-6?1 --(1 
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The integrals in (4.1) are evaluated by parts of the formulae 

dFldz= -G(z), dGldz= F-z-‘, F=d(G+h(z))/dz 

As a result we have 

q(x) = Ae-‘1 -A~~~~)-‘w,(x)+~~(x)+R,, x>a 

A = WOO-’ (h)sh(h); B = W,(27c~(&))-’ 

‘h(~)=i[F(+)- F(xz)]+G(xI)+G(xz) 

w*~~)=~“[~,~x*)-EI~x,)]-~-~[E,(--xz)-E,(-x~)] 

El(z) = ;i-‘e-‘dt, larg(z>l < rc 
‘? 

l&J< Wa(1+2WW-a), M, =C+ST~-~+(~~(~E,))+E; 

(4.2) 

(4.3) 

The quantities D(h), E, E, and h occurring here are given by (3.9, (3.2) and (3.7). 
From (4.3) with x + a+ we obtain the value of the amplitude function of the free surface at 

points where the boundary conditions change 

Hence, the upper boundary of the liquid undergoes a finite first-order discontinuity at the 
points where the boundary conditions change x=&a, the magnitude of the jump being 
proportional to the dimensionless frequency. 

5. AN ESTIMATE OF THE DISCREPANCY OF THE BOUNDARY CONDITION AT LOW 
FREQUENCIES IN THE ORIGINAL PROBLEM 

We shall also estimate the discrepancy in the boundary condition in (1.1) when z = 0, I x IS a, 
i.e. compute the amplitude function q(x) for the deformation of the upper boundary of the 
liquid at I x IS u and compare it with the specified value q(x) = W,. We shall show that 

Mx)=K[l+O(5)]. (5.1) 

From (4.1) and (2.2) at Ix IS a we evaluate the integrals and obtain 

q(x)= Wo{2-e-k* -81 +io-‘(h)4(yx)[l-e-~*]+iD-‘(li)D,(p)[l-e~lj-l+ 

+n-‘[ F(xz)- F(-x,)]- 2-l ch(yx)+(2x;)-’ ch(X)[F(x,)+ F(-x,)1+(2+ sh(hj[G(-x&i 

+ln(-x,)+G(xz)+ln(x2)]+0(5)} (5.2) 

From this, using the representations of F(z) and G(z) when I z I+ 0, we obtain (5.1). 
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6. SOLUTION OF THE INTEGRAL EQUATION FOR FIXED BOUNDED FREQUENCIES 

We shall show that for all h = ya of suf~ciently small absolute mag~tude (I 31. I< he), the 
integral operator U specified by the right-hand side of Eq. (2.3) is a contraction operator. 

We assume that W(x) belongs to the space L2 and we seek a solution of (2.3) among 
functions in L’. 

Let (2, and Q, be two arbitrary functions in L’. We shall show that a positive constant CL < 1 
exists such that 

Putting 5 = Q, - Q2, y, = UQ,, y, = UQz, we have 

1~1 (x) - y2WI G ]Y] i /%a>]& + ft-‘]Y] ~~~(~~G(Y~~ - a]% 
-a -0 

From this, using the Cauchy-Bunyakovskii inequality and the estimate for G(z) from (3.2) 
we obtain 

JY,(X)-Y2(# IYl [ a (2 )H 

Squaring both sides of this equation and integrating, we have 

//Yl -y2]]c fh]BftSlf, B=4+2%& jfH(,)d,+x-2 /f(s)* 
-1 -I 

f(s) = !G2(&]s - r])dt, A0 = you 

It follows from this that when I ya tc B-’ = h*, the operator U is a contraction operator. Thus, 
by the Banach theorem IQ], we have proved the existence of uniquene~ of the solution of Eq. 
(2.3), and this solution can be obtained by the method of successive approximations. One can 
take any function in L2 to be the initial function. Here uniqueness means the uniqueness “up 
to a transition to an equivalent function” [Q]. 

In the case when W(x) = W, = const > 0, taking the initial function to be Q = (0), we find 

ec’ w = - pgwo 

Qc2’(x)= -pg&(l-emk2 -eeiX1 +l+d[(-F(O)+F(x2))+(F(-x,)-F(O))]} -pgW, 

F(z) = ci(zasin(z)-si(z)cos(z), Rez > 0 

Expanding the functions in series, we obtain 

Q’2’(n)=pgWo(-l-a-‘[~21n(x2) -x1 ln(-xl)]-h[2i+2K1(C-1)]+0(&} 

which is identical with the representation (3.10) for Q(‘)(x) obtained by other methods. 
I wish to thank V. I. Yudovich for discussing the results and for a number of remarks. 
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